Specifically, Delphi Automotive Systems and BMW are developing an SOFC that will power auxiliary units in automobiles. A high-temperature SOFC will generate all of the needed electricity to allow the engine to be smaller and more efficient. The SOFC would run on the same gasoline or diesel as the engine and would keep the air conditioning unit and other necessary electrical systems running while the engine shuts off when not needed (e.g., at a stop light).
Rolls-Royce is developing solid-oxide fuel cells produced by screen printing onto inexpensive ceramic materials. Rolls-Royce Fuel Cell Systems Ltd is developing a SOFC gas turbine hybrid system fueled by natural gas for power generation applications on the order of a megawatt.[4]
Ceres Power Ltd. has developed a low cost and low temperature (500-600 degrees) SOFC stack using cerium gadolinium oxide (CGO) in place of current industry standard ceramic, yttria stabilized zirconia (YSZ), which allows the use of stainless steel to support the ceramic.
Solid Cell Inc. has developed a unique, low cost cell architecture that combines properties of planar and tubular designs, along with a Cr-free cermet interconnect.
Advanced fuel cell research at institutes of higher learning is becoming more and more popular. The high temperature electrochemistry center (HITEC) at the University of Florida, Gainesville, led by Dr. E.D. Wachsman, is focused on studying ionic transport, electrocatalytic phenomena and microstructural characterization of ion conducting materials.